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Abstract

Consider the Diophantine equation 2x + 2y = z2, where x, y and z are nonnegative integers. As this
equation has infinitely many solutions, in this paper we study its solutions in case where the unknowns
represent Fibonacci and/or Lucas numbers. In other words, we completely resolve the equation in case of
(x, y, z) ∈ {(Fi, Fj , Fk), (Fi, Fj , Lk), (Li, Lj , Lk), (Li, Lj , Fk), (Fi, Lj , Lk), (Fi, Lj , Fk)} with i, j, k ≥ 1 and Fn

and Ln denote the general terms of Fibonacci and Lucas numbers, respectively.
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1. Introduction and Preliminaries

Diophantine equations of the form
ax + by = cz (1.1)

have been widely studied by many authors in certain cases. For instance, in 1958 Nagell [9] determined all
the positive integer solutions of equation (1.1) under the condition that a, b, c are prime numbers such that
max{a, b, c} ≤ 7 and a > b. Starting from 1959 several authors obtained the solutions of equation (1.1) in
case of 11 ≤ max{a, b, c} ≤ 23 such that Makowski [8], Hadano [4], Uchiyama [18], Sun and Zhou [16] and
Yang [19]. In 1988, Cao [2] gave all the sixty solutions in total for equation (1.1) when 29 ≤ max{a, b, c} ≤ 97.
More precisely, he proved that if max{a, b, c} > 13, then (1.1) has at most one solution in positive integers.
Furthermore, in 1999 [3] he obtained a more general result. In fact, many equations of the form (1.1) have
been considered. For example, in 2002 Sándor [13] published a booklet that collects some of his papers
dealing with such equations, e.g. 3x + 3y = 6z and 4x + 18y = 22z. Later in 2007, Acu [1] investigated the
solutions of the equation

2x + 5y = z2.
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He indeed proved that this equation has only two solutions in nonnegative integers, namely (x, y, z) = (3, 0, 3)
and (2, 1, 3). Since then, there have been increasing interests in studying the solutions of a general form of
the latter equation; that is

px + qy = z2,

see e.g. [11] and the references given there. One of the interesting results was given by Suvarnamani [17] in
which he studied the solutions of the Diophantine equation

2x + qy = z2, (1.2)

where the unknowns x, y and z are nonnegative integers and q is a prime number. In fact, he showed that
if q = 2 then equation (1.2) has infinitely many solutions. More precisely, the solutions are given by

(x, y, z) ∈ {(2s− 1, 2s− 1, 2s), (2r + 3, 2r, 3 · 2r), (2r, 2r + 3, 3 · 2r)},

where s and r are positive and nonnegative integers, respectively. On the other hand, Diophantine equations
connected to linear recurrence sequences have been widely studied by many mathematicians, see e.g. [5],
[6], [10], [14] and the references given there.

Therefore, in this paper we answer the question of whether or not the Diophantine equation

2x + 2y = z2 (1.3)

has infinitely many solutions if x, y and z are Fibonacci and/or Lucas numbers. In other words, we investigate
the solutions of each of the following Diophantine equations:

2Fi + 2Fj = F 2
k , (1.4)

2Li + 2Lj = L2
k, (1.5)

2Li + 2Lj = F 2
k , (1.6)

2Fi + 2Lj = F 2
k , (1.7)

2Fi + 2Fj = L2
k, (1.8)

2Fi + 2Lj = L2
k, (1.9)

where the indices i, j and k are positive integers, and Fn and Ln respectively represent the nth terms of the
Fibonacci and Lucas sequences, that are defined by the following recurrence relations:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2,

and
L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

It is known that the characteristics polynomial of these sequences is defined by

x2 − x− 1 = 0,

whose roots are

α =
1 +

√
5

2
and β =

1−
√
5

2
,

which imply that β = −1
α . Hence, the Benit’s formulas of the Fibonacci and Lucas sequences are defined by

Fn =
αn − βn

α− β
and Ln = αn + βn (1.10)

for all n ≥ 0. Moreover, one can easily prove that

αn−2 ≤ Fn ≤ αn−1 for all n ≥ 1, (1.11)
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and
αn−1 ≤ Ln ≤ αn+1 for all n ≥ 1. (1.12)

These sequences are connected by the identity relationship between the Fibonacci and Lucas sequences

L2
n = 5F 2

n ± 1. (1.13)

In fact, there are many results and identities related to these sequences, and for more details see e.g. [7]
or [12]. Later in this paper, we show an interesting result concerning the solutions of the above problems
presented in equations (1.4)–(1.9) where the unknowns are Fibonacci and/or Lucas numbers; that is these
equations have finitely many solutions, that are completely determined in Section 2.

Remark 1.1. Our argument of attacking the above problems represented in equations (1.4)–(1.9) is based
on providing an upper bound for the minimum of the indices. So, in order to completely resolve each of
the equations, we have to determine all the possible values of i, j and k in which the studied equation is
satisfied. In other words, we have to determine the solutions of each equation at the cases: i ≤ j ≤ k, j ≤
i ≤ k, k ≤ i ≤ j, k ≤ j ≤ i, i ≤ k ≤ j and j ≤ k ≤ i. Therefore, in order to eliminate some of these cases, we
introduce the following lemma:

Lemma 1.2. If any of the equations (1.4)–(1.9) is satisfied at arbitrary values of i, j, k ≥ 9, then i, j < k.

Proof. Note that the proof of this lemma can be conducted by a contradiction. Let’s first consider equation
(1.4) that holds at some of the integers i, j, k ≥ 9 and assume for a contradiction that i ≥ k or j ≥ k. Thus,
equation (1.4) leads to

2Fk < 234 + 2Fk ≤ 2Fi + 2Fj = F 2
k , (1.14)

which is false since one can easily use induction to prove that

2Fk > F 2
k (1.15)

for all k ≥ 9. That can be preformed as follows:

• Base step: If k = 9, then inequality (1.15) is clearly satisfied as 234 > 342.

• Inductive step: Suppose that inequality (1.15) holds for all k ≥ 9. Therefore,

2Fk+1 = 2Fk2Fk−1 > 221F 2
k > 4F 2

k + 2097148F 2
k > 4F 2

k + 2424303088 > 4F 2
k > F 2

k+1

as k ≥ 9, since F 2
k+1 = F 2

k + 2Fk−1Fk + F 2
k−1 < 4F 2

k .

That proves inequality (1.15) and leads to the contradiction of inequality (1.14). Hence, the statement of
Lemma 1.2 in case of equation (1.4) is proved.

Similarly, by applying the same approach on equations (1.5), (1.6) and (1.8) with assuming for a con-
tradiction that i ≥ k or j ≥ k such that k ≥ 9, we respectively obtain the following inequalities:

2Lk < 276 + 2Lk ≤ 2Li + 2Lj = L2
k, (1.16)

2Lk < 276 + 2Lk ≤ 2Li + 2Lj = F 2
k (1.17)

and
2Fk < 234 + 2Fk ≤ 2Fi + 2Fj = L2

k. (1.18)

Regarding to inequality (1.16), one can easily use induction (as shown above with inequality (1.15), so we
omit the detail of the proof) to show that

2Lk > L2
k for all k ≥ 9. (1.19)
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Again, we obtain a contradiction. Note that as Lk > Fk for all k ≥ 9, then inequality (1.17) implies that

2Fk < F 2
k

which is not true as shown above in (1.14) and (1.15). Similarly, inequality (1.18) is not true for all k ≥ 9,
and that can be shown by using induction to prove that

2Fk > L2
k for all k ≥ 9. (1.20)

For the simplicity of the base step, we only start with the inductive hypothesis, for which the above inequality
is satisfied, to show that

2Fk+1 = 2Fk2Fk−1 > 221L2
k > L2

k+1

for all k ≥ 9, and that shows the truthiness of inequality (1.20) and falseness of inequality (1.18). Hence,
we get a contradiction. Therefore, the statement of Lemma 1.2 regarding to equations (1.5)–(1.6) and (1.8)
is also proved.

It remains to prove the statement of Lemma 1.2 regarding to equations (1.7) and (1.9) as i, j, k ≥ 9. In
a similar way, we use the same approach used earlier by assuming that the equations are satisfied at some
of i, j and k with i ≥ k or j ≥ k. First, equation (1.7) gives that

2Lk < 234 + 2Lk ≤ 2Fi + 2Lj = F 2
k (1.21)

or
2Fk < 276 + 2Fk ≤ 2Fi + 2Lj = F 2

k (1.22)

as j ≥ k or i ≥ k, respectively. Again, from the proof of (1.15) we can easily conclude that the inequalities
(1.21) and (1.22) are false as k ≥ 9. Here is also a contradiction. Similarly, equation (1.9) leads to the
following inequalities:

2Lk < 234 + 2Lk ≤ 2Fi + 2Lj = L2
k,

2Fk < 276 + 2Fk ≤ 2Fi + 2Lj = L2
k.

Indeed, from the proofs of inequality (1.19) and inequality (1.20), we respectively conclude the latter two
inequalities are false for all k ≥ 9. Similarly, we obtain a contradiction, and that completes the proof of
Lemma 1.2.

Remark 1.3. From Lemma 1.2, we eliminated four cases of the ones mentioned in Remark 1.1, i.e. k ≤ i ≤
j, k ≤ j ≤ i, i ≤ k ≤ j and j ≤ k ≤ i where i, j, k ≥ 9. Therefore, it only remains to study the solutions of
equations (1.4)–(1.9) at the cases 9 ≤ i ≤ j ≤ k and 9 ≤ j ≤ i ≤ k. Furthermore, the solutions of each of
these equations with 1 ≤ i, j, k ≤ 8 at all of these cases can be determined easily using any mathematical
software, e.g. SageMath [15]. In addition to that, later in the proof of our results we mainly fix the condition
that 9 ≤ i ≤ j < k in each of the equations (1.4)–(1.6) and (1.8) to determine the corresponding set of
the solutions {(i, j, k)} since the set of solutions related to the remaining case can be obtained easily by
permuting the component i with j, namely it is represented by the set {(j, i, k)}. However, in case of
equations (1.7) and (1.9) we consider both of the cases 9 ≤ i ≤ j ≤ k and 9 ≤ j ≤ i ≤ k.

2. Main results

Lemma 2.1. If the triple (i, j, k) with i, j, k ≥ 9 is a solution of any of the equations (1.4)–(1.9), then
i+ j < k and 2j < k.
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Proof. As followed in the proof of Lemma 1.2, the proof of this lemma can be achieved by a contradiction.
Here, we may consider e.g. equation (1.5) that holds at the triple (i, j, k) with i, j, k ≥ 9 such that i ≤ j < k
and assume for a contradiction that i+ j ≥ k or 2j ≥ k. Hence, we obtain that

2Lj < 276 + 2Lj ≤ 2Li + 2Lj = L2
k ≤ L2

2j (2.1)

as i ≤ j with i, j ≥ 9. Indeed, this is not true, and we can use induction to prove that by showing

2Lj > L2
2j (2.2)

for all j ≥ 9. We may start with the inductive step by assuming the latter inequality holds for all of j ≥ 9.
Thus,

2Lj+1 = 2Lj2Lj−1 > 247L2
2j > 9L2

2j > L2
2j+2, (2.3)

since L2
2j+2 = 4L2

2j + 4L2jL2j−1 + L2
2j−1 < 9L2

2j . This completes the proof of inequality (2.2) and leads to
the contradiction of (2.1). Therefore, this implies that i + j < k and 2j < k. Next, we similarly deal with
equations (1.4), (1.6) and (1.8), which give the following inequalities:

2Fj < 234 + 2Fj ≤ 2Fi + 2Fj = F 2
k ≤ F 2

2j ,

2Lj < 276 + 2Lj ≤ 2Li + 2Lj = F 2
k ≤ F 2

2j

and
2Fj < 234 + 2Fj ≤ 2Fi + 2Fj = L2

k ≤ L2
2j ,

respectively. As done above, one can easily get a contradiction by showing each of the latter three inequalities
are not true for all j ≥ 9. Therefore, we omit the detail of computations. Again, we here get that i+ j < k
and 2j < k. It remains to deal with equations (1.7) and (1.9) under the assumption that i+ j ≥ k or 2j ≥ k.
As mentioned in Remark 1.3, we consider these equations with the cases 9 ≤ i ≤ j ≤ k and 9 ≤ j ≤ i ≤ k.
Let’s start with these equations under the condition that 9 ≤ i ≤ j ≤ k, we respectively obtain that

2Lj < 234 + 2Lj ≤ 2Fi + 2Lj = F 2
k ≤ F 2

2j (2.4)

and
2Lj < 234 + 2Lj ≤ 2Fi + 2Lj = L2

k ≤ L2
2j , (2.5)

which are not true as shown above. Finally, we obtain the following inequalities from equations (1.7) and
(1.9) under the condition that 9 ≤ j ≤ i ≤ k:

2Fi < 276 + 2Fi ≤ 2Fi + 2Lj = F 2
k ≤ F 2

2i

and
2Fi < 276 + 2Fi ≤ 2Fi + 2Lj = L2

k ≤ L2
2i,

and the falseness of these latter two inequalities was already shown. So, we get contradictions. Hence, we
conclude that i+ j < k and 2j < k, and Lemma 2.1 is completely proved.

Theorem 2.2. Let (i, j, k) ∈ N3 be an arbitrary solution of any of the equations (1.4)–(1.9), then i, j, k ≤ 8.
In particular, equations (1.4) to (1.9) have five, one, one, two, one and one solutions, respectively.

Proof. Assume for a contradiction that these equations have solutions only if i, j, k ≥ 9, then from Lemma
2.1 we have that i + j < k and 2j < k. Again, as mentioned in Remark 1.3 we fix the condition that
9 ≤ i ≤ j < k in each of the equations (1.4)–(1.6) and (1.8), and in case of equations (1.7) and (1.9) we
consider both of the cases 9 ≤ i ≤ j ≤ k and 9 ≤ j ≤ i ≤ k. From equation (1.4) with the use of Benit’s
formula of Fibonacci numbers in (1.10), we get that

(α2)k ≤ 2 · 5 · 2Fj + 2(αβ)k − (β2)k
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as 9 ≤ i ≤ j. Since β = −1/α such that α = (1 +
√
5)/2 and β = (1 −

√
5)/2, we can rewrite the latter

inequality as follows:
2k < (α2)k < 12 · 2Fj ,

that leads to

k − Fj <
ln(12)

ln(2)
< 3.6. (2.6)

From the facts that i+ j < k, 2j < k and j < Fj for all j ≥ 9, we have that k − Fj > j or k − Fj > i. So,
inequality (2.6) respectively gives that

i ≤ 3 or j ≤ 3,

which contradicts the assumption of i, j ≥ 9. Therefore, there are no solutions for equation (1.4) where
i, j, k ≥ 9, and hence i, j, k ≤ 8. Next, we consider equation (1.5) with the use of Benit’s formula of Lucas
numbers in (1.10), we obtain that

2k < (α2)k ≤ 2 · 2Lj − 2(αβ)k − (β2)k < 4 · 2Lj ,

which leads to

k − Lj <
ln(4)

ln(2)
= 2.

Again, since i+ j < k, 2j < k and j < Lj for all j ≥ 9, we have that k − Lj > j or k − Lj > i. Therefore,
we have that

i < 2 or j < 2,

and this contradicts the assumption of i, j ≥ 9. Thus, if equation (1.5) has a solution of the form (i, j, k),
then i, j, k ≤ 8. Following the same approach on equations (1.6) and (1.8), we respectively obtain that

2k < (α2)k < 12 · 2Lj (2.7)

and
2k < (α2)k < 4 · 2Fj . (2.8)

Similarly, inequality (2.7) implies that
i ≤ 3 or j ≤ 3,

and inequality (2.8) gives that
i < 2 or j < 2.

Again, we get contradictions. Now, we consider equation (1.7) with 9 ≤ i ≤ j ≤ k, and from the fact that
2Fi < 2Lj for all j ≥ 9 we get that

2k < (α2)k < 12 · 2Lj .

Again, we have that
i ≤ 3 or j ≤ 3.

It remains to consider equation (1.7) with the case of 9 ≤ j ≤ i ≤ k. Since 2Fi < 2Li for all i ≥ 9, we
similarly obtain that

2k−Li < 12

and hence
i ≤ 3 or j ≤ 3,

since i + j < k and j ≤ i < Li for i, j ≥ 9 imply that k − Li > i or j. From both case, we also obtain a
contradiction. Therefore, i, j and k must be less than or equal to 8. Finally, we deal with equation (1.9)
with the cases 9 ≤ i ≤ j ≤ k and 9 ≤ j ≤ i ≤ k. In fact, by following the exact approach used with equation
(1.7) we get that

i ≤ 2 or j ≤ 2,
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which clearly leads to a contradiction. Therefore, we again conclude that i, j, k ≤ 8. Finally, with the help of
SageMath software, we easily determine the complete set of solutions to equations (1.4)–(1.9) with i, j, k ≤ 8
as follows:

Eq. {(i, j, k)}
(1.4) {(1, 1, 3), (1, 2, 3), (2, 1, 3), (2, 2, 3), (5, 5, 6)}
(1.5) {(2, 2, 3)}
(1.6) {(1, 1, 3)}
(1.7) {(1, 1, 3), (2, 1, 3)}
(1.8) {(4, 4, 3)}
(1.9) {(4, 2, 3)}

Hence, Theorem 2.2 is completely proved.
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